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Boundary Tension Between Amphiphilic Layers'

E. M. Blokhuis>

The structure and tension of the region of contact where an oil phase. a water
phase. and a microemulsion phase meet. are theoretically investigated. The
analysis has as a starting point a Landau theory-like expression for the free
energy in which. besides the usual gradient of the density squared term, a term
proportional to the second derivative of the density squared is present. while
the coeflicient of the squared gradient term is taken to be negative in the
microemulsion phase. It is shown that a first-order wetting transition exists at
which point infinitely many (n=0,1,2..) surface phases can coexist. each
described by the presence of a different thickness of the microemulsion phase
between the oil and the water phase. This situation physically describes the
coexistence of layers of amphiphilic molecules with different thicknesses between
a water and an oil bulk phase. the thickness of one amphiphilic layer being
equal to /,. We present the calculation of the density profile and the boundary
tension of the contact region of a coexisting n=1{ and n =1 surface phase. e.g..
between the oil-water interface with a single amphiphilic layer present and the
oil-water interface where three amphiphilic layers are present.
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1. INTRODUCTION

When oil, water, and a surfactant are mixed at different concentrations, a
wide variety of phases is observed [ ]. At low concentrations of added sur-
factant (inverted) micelles of small droplets of oil (water) are surrounded
by surfactant, while at high concentrations of surfactant complex structures
arise, of which the lamellar phase is probably the best known. In this
phase, a large number of layers of amphiphiles are stacked between the oil
and the water phase. In certain parts of the phase diagram only one or a
few layers of amphiphiles will be present at the oil-water interface, but
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under proper conditions a larger number of layers can coexist at this inter-
face. The coexisting layers ol different thicknesses meet to form a contact
line and it is the theoretical calculation of the structure and tension of this
line that is the subject of this paper.

Recently. a number of cxperiments focused on measuring the line (or
boundary} tension between layers of amphiphilic material on water in air
[2 4]. In the experiment of Benvegnu and McConnell [2] in 1992, the
boundary tension of lipid domains at the air water interface was measured
by investigating the distortion of these domains under shear. By varying
the applied surface pressure they found values for the line tension ranging
from Sx10 " to 1.ox10 '"*N. In 1993. the boundary tension between
smectic membranes of different thicknesses was measured by Pieranski
et al. [3]. This was done by measuring both the surtace tension oy as a
function of the number of lavers N and the critical radius R of circular
domains of smectic phase with thickness N —1 surrounded by a smectic
phase counsisting of N layers. The boundary tension t is then calculated
from the two-dimensional analogue of Laplace’s law: o, —-a, ,=1/R
Thev find that the boundary tension s independent of N and equal to
41510 "N,

Theoretical investigations [ 5] of the structure and tension of the contact
line have been limited to the case where the three phases. that mect to form
the line. are not complex. The three phases are either two liquids with their
vapor [ 6. 7] or a liquid and its vapor near a structureless wall [ 8. 9]. In these
cases the line tension has been calculated along three-phase coexistence when
the three phases meet in a line [6. 8], as well as along the prewetting line
where prewetting phases consisting of different thicknesses coexist [7-97]. In
the Landau model that we will use to calculate the boundary tension. the sur-
face [ree energy is a functional ol only one density. ni. The explicit form was
first given by Gompper and Schick [ 10] and has been successfully used to
describe a number of different microemulsion phases [10-12].

In the next section we describe the Landau theory for microemulsions
and in Section 3 we extend the theory to calculate the structure and tension
of coexisting amphiphilic layers. In the last section a brief summary of
results is given.

2. LANDAU MODEL
The model for the free energy as a functional of the density n1 is taken
to be of the following form [107]:

-

- 1 ¢ 2o/ =
F[/n]:! dz ;.Q(lrl)(ffrl(:)> +5 Fm(:) + flnn) (1)
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where we have assumed symmetry in the x and » direction so that the
density is a function of - alone. The above free-energy functional is of the
usual Landau form where the expansion in squarc gradients is up to a
sccond dertvative squared term with constant positive cocflicient ¢. The
addition of such a term is necessary for stability since we will allow g(m).
the cocfhicient of the squared gradient term, to be negative when m equals
the density in the middle phase. The free-encrgy density f{m) has to allow
for the coexistence of three phases. namely. the oil phase. the water phase.
and the middle phase, and should therefore exhibit three equal minima at
the three bulk densitics. Specifically. we assume g(:n1) and f{m1) to be given
by the following lorm [ 10]:

(m+1)° 1 m< — 1
flmy=< o g =<g —~l<m<l! (2)
(m—1) ] m>!

Units are chosen such that the curvature of f{m) at its minima is equal to
2. gtm) =1 in the oil and water phase. and the density of the oil and water
phase is equal to +1. The structure of g(m) follows from scattering
experiments in the three bulk phases. The structure factor S(k) in the
middle phase calculated from Eq. (1) is given by

I
Sty # ——— 3
k4 ok )

where 4 is the wave number of the scattered light and /5 denotes the second
derivative of /() in the bulk middle phase. While the oil and water phases
exhibit a peak in the structure factor at & = 0. the peak in the middle phase
is at &k > 0, signifying that g < 0. The presence of amphiphiles in the middle
phase indicates the fact that gradients in the density are now favored by the
system. We can understand this in terms of the amphiphilic molecules
trying to bring the oil and water phases. of different densities. closer
together. One of the consequences of this is that the more amphiphilic a
surfactant is, the more negative g will be.

The above forms for f(n1) and glm) are a specific case of the forms
given by Gompper and Schick [10]. Here we have chosen. lor simplicity.
the density of the middle phasc (#1=0) to be half of the sum of the density
of the water (m=1) and the density of the oil phase (m = —1). Further-
more, the values of g{s1) in the water and oil phase arc chosen equal to
each other and the value of f(m) at the minimum corresponding to the
stable middle phase is taken to be equal to the value at the minima for the
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water and oil phase. It should be noted that g(»1) and f*(m) are discon-
tinuous at m = + 1, the value of the densities where the parabolas of f{im)
meet, and that therefore the density profile that minimizes Eq. (1) will not
be analytic when m = + }. The minimizing density profile is found in two
steps. First, one chooses a fixed height / defined so that m(-=1/)=3, the
height at which one of the discontinuities occurs, namely, in the third
derivative of the density with respect to -=. We choose the - =0 plane such
that m(z=0)=0, and by the symmetry of Eq. (2) we then have that
m(—z)= —m(z) and consequently m(z= — /)= — { The Euler-Lagrange
equations for the density profile that minimizes the free-energy functional
in Eq. (1) are then solved in the three regions - < —/, —/<:-</ and >/
under the constraint that the density and its first and second derivatives are
continuous at == +/ Second, the surface free energy is calculated as a
function of / by inserting the density profile into Eq. (1) and is subse-
quently minimized with respect to / to yield the equilibrium profile.
The Euler-Lagrange equations in the three regions are

m"(zy=2(m(z)+ 1)+ em™(2), o< =1
gm”(z)=2m(z) + em™(2), —I<z-</ (4)
m'(z)y=2(mz2) =D+ em™(2), o>

where a prime indicates differentiation with respect to its argument. The
solutions of these differential equations are simple sums of exponentials

—1+ 4,5 4+ 4,65, c< =1
B, sinh(k,, ,z)cos(k,, =)
m(z)= . (5)
+ B, cosh(k,, ,z)sin(k,, »z), —l<z-<l
1 —Ae k5= 4,075 =>1
where we have defined the inverse length
) g 1/2
ky=(2c) 7" (14 (1 —8¢)' )2, k,,,_,=(2c>—'/2<§+(2c)”2>
(6)
i aoin [ & 2\
ky=(2¢)7"2 (1= (1=8c)"?)'">, k,,,‘3=(2c)_""(—;+(2c')”->
and where we have used m(—:z)= —m(z) and the fact that the densities
must be equal to the bulk water and oil densities at = + oc. We are inter-

ested mainly in the case where all the k; and &, , are real and positive.
This poses as restriction for the values of ¢ and g, 0O<c<4$, and
lgl <2(2¢)'P = —g*.
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For fixed /, one now is able to determine the four unknowns, 4,, 4,,
B,. and B,, by requiring the density to be equal to +4 at == +/ and the
density profile and its first and second derivative to be continuous at this
point. The surface free energy as a function of /, which we denote o(/), is
subsequently calculated by inserting the profiles from Eq. (5) into Eq. (1).
The analytic answer is rather lengthy and we do not reproduce it here
[14]. A typical example of o(/} is shown in Fig. 1. In this example ¢ =0.01
and, from top to bottom, g=0.3, 0.2, 0, —0.2, g*= —0.282842.... The
filled circles indicate the location of a (local) minimum. The first minimum
(smallest /) is the one of lowest free energy when g* < g < — g*. The system
is then in the partially wet regime: Only a microscopic amount of middle
phase can be present at the oil-water interface. When a bulk of middle
phase is present in the system, the three phases (oil, water, and middle
phase) meet at a line of contact with the three contact angles determined
by the three surface tensions according to Neumann’s rule [13]. It was
already noted by Schick [12] that the addition of the second derivative
squared term in Eq. (1) leads to the possibility of the presence of a nonwet
regime in a theory with a single order parameter.

When the value of g is increased, the value of /, being (half) the thick-
ness of the middle phase, at the first minimum, continuously increases and
becomes infinite at g= —g*. For g> —g* the system is in a regime of
complete wetting: The middle phase completely intrudes between the oil
and the water phases (top curve in Fig. 1). The three surface tensions are
now related to each other by Antonow’s rule [13, 15], which states that
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Fig. 1. The surface free energy as a function of / for
¢=0.01 and. from top to bottom, g =03, 0.2, 0, —0.2,
g*= —0.282842.... The circles indicate the location of a
(local) minimum. At g=g* the values of the surface
free energy at all the minima are equal.
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the surface tension of the oil-water interface equals the sum of the surface
tensions of the oil-middle and water-middle interfaces. The condition
g= —g* denotes the location of a (continuous) wetting transition.

Upon decreasing the value of g one finds the value of the surface free
energy at its minimum to decrease. This indicates that the surface tension of
the oil-water interface can be lowered by adding a surfactant with increas-
ing amphiphilicity. Figure 1 shows that the value of the free energy at the
second minimum decreases as well and starts to compete with the first mini-
mum. The density profile corresponding to the first minimum increases
monotonically as a function of -, while the density profile corresponding to
the second minimum exhibits a maximum and a minimum in the middle-
phase region. We will interpret the shape of the curve corresponding to the
second minimum as the presence of three layers of amphiphiles, while at the
first minimum only one layer of amphiphiles is present.

When g =g* the surface free energy of the second minimum is exactly
equal to the surface free energy of the first minimum { 14]. This behavior
can be seen in the lowest curve in Fig. 1. Not only does the surface free
energy at the second minimum become equal to the surface free energy of
the first minimum, but at g=g* infinitely many equal minima of the
surface free energy occur as a function of /. This reflects the fact that at
g=g¥*, surface phases with 1, 3,5,.. layers of amphiphiles present can
coexist. In some sense, g =g* locates a (first-order) wetting transition since
the number of layers may be infinitely large.

In the next section we calculate the structure and boundary tension of
the contact line where two surface structures, one corresponding to the first
and the other corresponding to the second minimum at g=g* in Fig. 1,
meet. Since these surface structures can coexist only when g=g* we first
investigate how the above formulas are simplified when g=g* When
g=g*, the definition in Eq. (6) implies that k,, ,=0. As a result the
density profile, Eq. (5), is now given by

— 14 4,65 + 4,05, < =1
m(z)={ B, sin(k,,z) + B,z cos(k,,2), —l<z<l  (g=g%* (7)
1 —Ae M —A,e 7, o>

with k,, = (2/c)'*. Again, for fixed / we can determine the four unknowns,
A, A5, B, and B,, by requiring the density to be equal to +3at = +/
and the density profile and its first and second derivatives to be continuous
at this point. The surface free energy has (equal) minima when

1 k. +k,
I=Icq‘,,zk—[arctan< '2: '>+nn] (n=0,1,2,.) (8)



Boundary Tension Between Amphiphilic Layers 59

where the subscript eq denotes that these values of / belong to the
equilibrium state of the system. The (equilibrium) surface tension at these
minima is given by
=a(l k,—4 9
Og=0ag cq,l,)_4(kl+k2) ( )
Here we have defined o as the surface free energy after minimization with
respect to /.

3. BOUNDARY TENSION

In this section, we calculate the structure and tension of the contact
line between two surface phases with thicknesses /=/, ,and /=1, ,. We
will choose the contact line parallel to the y-direction and locate the surface
phase with /=1, , at x= — o and the surface phase /=/,,  at v= . The
density profile, m(x, =), will now depend not only on = but also on x. It i1s
obtained from minimizing the surface free-energy functional in Eq. (1),
generalized to accommodate for an x- and --dependent density,

P N 1 a : a ?
Alml=| d:] ax {5 g"”’[%) +<£> ]
HIES RO B

We make a variable transformation x — /(x) and investigate the density as
a function of - and /(x): m(/(x),z) [9]. The function /(x) is defined by
m(z=1I(x), x)=1, in analogy to the way it is defined in the previous sec-
tion, but / is now a function of x. The line - =/(x} defines a line of points
where the density profile has a discontinuous third derivative with respect
to =. For x = + oo the function /(x) is equal to the constant /., , ;.

With the substitution x — /(x) the surface free energy in Eq. (10) 1s a

functional of /(x),

F[/]=f" dx[3o,(D'(x)) + (DU (x)? + Jo(H'(x)) + DT (11)

where we have defined

ooll) = J:’ d= g(im) <62l m(l, :)>

o(l)=c Jl d- <§lm(l, :)>-

4
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crr ')- 51
ag(l)zil (/_[<_V ml, :)> <7/m(l ')>< =z mil, -)>]
] _ .r 1 _i ) 2 (_ E_’i . 2 ]
”l):J, ) (l_[ g(m)<a:m(l._)> +2<a:2m(l,_)> +/(m)}

The functions a,{/) and I(/) as defined above can be determined only if
one has knowledge of the density profile m(/, -). The way we proceed here
1s to approximate the density profile »n:(/, ) by the density profile m(z: /) as
defined in Eq. (7). Then the functions a{/), a,(/). g.(/). and }(/) can be
evaluated explicitly [9]. From a comparison of the definition of }{/) in
Eq. (12) with Eq. (1). we immediately deduce that }{/) equals the pre-
viously defined o(/). The surface {ree-energy functional has the form of the
interface displacement model [8, 15] but with the addition of the ,(/) and
a,(1) terms. The form is analogous to the Landau form in Eq. (1), and
similarly to the coeflicient of the gradient squared term in Eq. (1), o,(/) is
negative for some values of /, while the coefficient of the second derivative
squared term, a,(/), is positive but smail.

The Euler-Lagrange equation for the minimization of the surface free-
energy in Eq. (11) leads to the following. third-order, nonlinear differential
equation

(12)

—%a,,(/)(ll’)2 —La (U = 3DV +a (DI +a (D" + V=0
(13)

Although the functions a(/), a,(/), o.(/), and V() are all known analyti-
cally, the expressions for them are very lengthy and the solution to the
above differential equation with the appropriate boundary conditions can
be found only numerically. The resulting profile is exact when v — + o«
and only approximately correct in between. Since the surface free energy
is minimized with respect to the whole function /(x), we expect the
approximation to be very accurate.

Substituting the density profile mf(x, ) into the expression for the
surface free energy in Eq. (10) and subtracting the surface {ree-energy
contributions from the surface phases at + = gives the boundary tension, z,
between the two surface phases. The boundary tension as a function of ¢
is shown as the circles in Fig. 2. For small ¢ the boundary tension increases
rapidly with increasing ¢, then it goes through a maximum and decreases
until at a certain value of ¢ =¢* =0.1254... it becomes zero. For ¢ > ¢* the
boundary tension is negative. signifying that the interface between the two
surface phases is no longer stable.
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Fig. 2. Boundary tension as a lunction of ¢ (circles). The
boundary tension is negative for ¢>c¢*=0.1254... and is
zero when ¢=10. The dashed curve is the result of an
analytic expansion for small ¢ [see Eq. (14)].

Although the differential equation in Eq. (13) cannot be solved analyti-
cally, the coeflicients of the first two terms in an expansion in small ¢ can
be found numerically. The result is that the line tension, for small ¢, is given
by [14]

71=0.73632cYF = 26197 % + ((¢77) (14)

The resulting line tension in the expansion in small ¢ is shown in Fig. 2 as
the dashed curve. Although the qualitative behavior is correctly described
by the above approximation, quantitatively the expansion works only for
very small ¢.

4. SUMMARY

We have presented a mean-field calculation of the structure and ten-
sion between surface phases comprising of one and three amphiphilic layers
between a bulk oil and a water phase. The theory that we have used is a
single-order-parameter Landau model first proposed by Gompper and
Schick in 1990 [10]. We have shown that in a closely related model a
(first-order) wetting transition exists, at which point amphiphilic layers of
different thicknesses can coexist. Except for an initial sharp increase, we
find that the boundary tension between one and three layers of amphiphiles
decreases when the amphiphilicity of the surfactant molecules is increased.
This behavior is analogous to the behavior of the surface tension of the
oil-water interface when surfactant is added.

840 16, 1-5
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A detailed comparison of the calculation presented here with experi-
ments is not yet possible since measurements of the boundary tension have
been carried out in similar systems but not for the oil-water-surfactant
system. In order to make such a comparison, scattering experiments of the
bulk middle phase have to be carried out in addition, in order to determine
the relevant parameters g and c.
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