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Boundary Tension Between Amphiphilic Layers 

E. M. BIokhuis'- 

The structure and tension of the region of contact where an oil phase, a water 
phase, and a microemulsion phase meet, are theoretically investigated. The 
analysis has as a starting point a Landau theory-like expression Ibr the free 
energy in which, besides the usual gradient of the density squared term, a term 
proportional to the second derivative of the density squared is present, while 
the coefficient of the squared gradient term is taken to be negative in the 
microemulsion phase. It is shown that a first-order wetting transition exists at 
which point infinitely many (n=0 ,  1,2....) surface phases can coexist, each 
described by the presence of a different thickness of the microemulsion phase 
between the oil and the water phase. This situation physically describes the 
coexistence of layers of amphiphilic molecules with different thicknesses between 
a water and an oil bulk phase, the thickness of one amphiphilic layer being 
equal to /.. We present the calculation of the density profile and the boundary 
tension of the contact region of a coexisting n = 0 and n = I surface phase, e.g., 
between the oil water interface with a single amphiphilic layer present and the 
oil-water interlace where three amphiphilic layers are present. 
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1. I N T R O D U C T I O N  

W h e n  oil,  wa te r ,  a n d  a s u r f a c t a n t  a re  m i x e d  at  d i f fe rent  c o n c e n t r a t i o n s ,  a 

wide  va r i e t y  of  p h a s e s  is o b s e r v e d  [ 1 ]. At  low c o n c e n t r a t i o n s  o f  a d d e d  sur-  

f a c t a n t  ( i n v e r t e d )  mice l les  o f  sma l l  d r o p l e t s  o f  oil ( w a t e r )  a re  s u r r o u n d e d  

by  s u r f a c t a n t ,  wh i l e  at  h i g h  c o n c e n t r a t i o n s  o f  s u r f a c t a n t  c o m p l e x  s t r u c t u r e s  

ar ise ,  of  w h i c h  the  l a m e l l a r  p h a s e  is p r o b a b l y  the  bes t  k n o w n .  In th is  

phase ,  a l a rge  n u m b e r  of  l ayers  o f  a m p h i p h i l e s  a re  s t a c k e d  b e t w e e n  the  oil 

a n d  the  w a t e r  phase .  In c e r t a i n  p a r t s  o f  the  p h a s e  d i a g r a m  o n l y  o n e  o r  a 

few layers  o f  a m p h i p h i l e s  will be  p r e s e n t  at  t he  o i l - w a t e r  in ter face ,  bu t  
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under proper conditions a larger nunaber of layers can coexist at this inter- 
face. The coexisting layers of different thicknesses meet to form it contact 
line and it is the theoretical calculation of the structure and tension of this 
line that is the subject of this paper. 

Recently. a number of experiments focused on measuring the line (o," 
boundary} tension between layers of amphiphilic material on water in air 
[2 4]. In the experiment of Benvegnu and McConnell [2]  m 1992. the 
boundary tension of lipid domains at the air water interface was measured 
by investigating the distortion of these domains under shear. By, varying 
the applied su,face pressure tlley found values for the line tension ranging 
from 5 x 10 ,4 to 1.6 x 10 ~-" N. 1,1 1993. the boundary tension between 
smectic membranes of different thicknesses was meast, red by Pieranski 
et al. [31. This wits done by meast, ring both the su,'face tension try its a 
l'unctio,1 of the number of layers N and the critical radius R of circular 
domains of smectic phase with thickness N - 1  surrounded by a smectic 
phase consisting of N laye,'s. The boundary tension r is then calculated 
from the two-dimensional analogue of Laplace's law: a.v-cr .v 1= r/R. 
They find that the boundary tension is independent of N and equal to 
4 . 1 5 x l 0  it N. 

Theoretical investigations [ 5 ] of the structure and tension of the contact 
line have been limited to the case where the three phases, that meet to form 
the line. are not complex. The three phases are either two liquids with their 
vapor [ 6. 7 ] or a liquid and its vapor near a structureless wall [ 8.91- In these 
cases the line tension has been calculated along tlal'ee-phase coexistence when 
the three phases meet in a line [6.81 , as well as along the prewetting line 
where prewetting phases consisting of different thicknesses coexist [7-9] .  In 
the Landau model that we will use to calculate the boundary tension, the sur- 
face free energy is a functional of only one density, m. The explicit form was 
first given by.' Gomppcr  and Schick [ 101 and has been successffdly used to 
describe a number of difl'c,ent microemulsion phases [ 10 12 3. 

In the next section we describe the Landau theory for microemulsions 
and in Section 3 we extend the theory to calculate the structure and tension 
of coexisting amphiphilic layers. In the last section a brief summary of 
rest, Its is given. 

2. L A N D A U  M O D E L  

The model Ibr the fiee energy as a functio,ml of the density m is taken 
to be of the lbllowmg form [ 103: 

F [ m l = f  d- 2gi,n} ~z,n(-} : + 2  m(_-I + . f (ml  (I} 
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where we have assumed symmetry  m the x and v direction so that the 
density is a function of z alone. The above free-energy functional is of the 
usual Landau form where tile expansion in square gradients is up to a 
second deriwltive squared term with constant  positive coefficient ('. The 
addit ion o[" such a tel'm is necessary for stability since we will allow g(m),  
the coefficient of the squared gradient term, to be negative when m equals 
the density in tile middle phase. The free-energy dens i ty . f  (m} has to allow 
for the coexistence of three phases, namely,  the oil phase, tile water  phase, 
and tile middle phase, and should therefore exhibit three equal minima at 
tile three bulk densities. Specifically, we assume g(m) a n d . f  (m) to be given 
by the following form [ 10]: 

~ (m + I )2 ( 1  m < - '  

f ( m ) =  ~ m :  g l m ) =  l ,  ~ - { < m  < ' / 
( ( m  - 1 )2 m > 

(2l 

Units are chosen such that the curwtture of . / (m)  at its minima is equ:fl to 
2, g ( m ) =  1 in the oil and water  phase, and the density of  the oil and water 
phase is equal to _+1. The structure of  g{m) follows from scattering 
experiments  m tile three bulk phases. The structure factor S { k ) i n  the 
middle phase calculated froln Eq. (1) is given by 

1 
S ( k )  z (3) 

. f  ,_ + g k  : + ('k a 

where k is tile wave number  of the scattered light and./ ' ,  denotes tile second 
derivative o f f ( m l  m the bulk middle phase. While the oil and water phases 
exhibit a peak ill tile structure facto," at k = O, tile peak ill tile middle phase 
is a t / ,  > 0, signifying that g < O. The presence of amphiphi les  in the middle 
phase indicates the lact that g, 'adients m tile density are now liivored by the 
system. We can tmderstand this in terms of tile amphiphil ic  molecules 
trying to bring the oil and wate,  phases, of  diffe,-ent densities, closer 
together. One of the consequences of this is that tile mo,'e amphiphil ic  a 
surlilctant is, tile more  negative g will be. 

The above forms for f ( m )  and g(m)  a,e  a specific case of the forms 
given by G o m p p e r  and Schick [ 10]. Here we have chosen, for simplicity. 
the density of  the middle phase (m = 0l to be half of  the sum of the density 
of the water  (m = I ) and the density of the oil phase (m = - 1 ). Fu, ' ther- 
more,  the wflues of  g{m) in the water  and oil phase are chosen equal to 
each other  and the value o f f ( m )  at the min imum corresponding to the 
stable middle phase is taken to be equal to the value at the minima for the 
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water and oil phase. It should be noted that g(m) and f ' ( m )  are discon- 
tinuous at m = + _ ~, the value of  the densities where the parabolas o f f ( m )  
meet, and that therefore the density profile that minimizes Eq. (1) will not  
be analytic when m = _+ ½. The minimizing density profile is found in two 
steps. First, one chooses a fixed height l defined so that m(z = l ) =  ~,l the 
height at which one of  the discontinuities occurs, namely, in the third 
derivative of  the density with respect to z. We choose the z = 0 plane such 
that r e ( z = 0 ) = 0 ,  and by the symmetry of  Eq. (2) we then have that 
m ( - z )  - r e ( z )  and consequently m(z / ) =  i The Euler-Lagrange 
equations for the density profile that minimizes the free-energy functional 
in Eq. (1) are then solved in the three regions - <  - l ,  - / <  z < l, and - > /  
under the constraint that the density and its first and second derivatives are 
continuous at z = _+/. Second, the surface free energy is calculated as a 
function of  / by inserting the density profile into Eq. (1) and is subse- 
quently minimized with respect to / to yield the equilibrium profile. 

The Euler-Lagrange equations in the three regions are 

m"(z) = 2(re(z) + 1 ) + (m "(z), 

gm"(z) = 2m(z) + cm''(z), 

m"(z) = 2(re(z) - 1) + c m ' ' ( - ) ,  

z <  - - /  

- I < z < l  

z > l  

(4) 

--1 + Alek~: + A2 ek::, z<  - I  

2 Bt sinh(k,.. , z) cos(k,,,. 2 z) 

re(z) = ) + B, cosh(k,,, jz)sin(k,, ,2z), - I < z < l  (5) 

( .I  - -  A je-k ' : - -A2e-k ' : ,  z > I 

where we have defined the inverse length 

kl = ( 2 c )  -u2 (1 

k 2 = (2c) -u2 ( 1 

+ (1  -8c )1 '2 )  '/2, 

- ( 1  -8c)J/2) 1'2, 

),,2 
k,,, . l=(2c) -1/2 + ( 2 c )  j/2 

k,,,.2=(2c) -u'2 - +(2c )U 2 

6) 

and where we have used m ( - : ) =  - r e ( z )  and the fact that the densities 
must be equal to the bulk water and oil densities at : = _ @. We are inter- 
ested mainly in the case where all the /,'i and k,,,.i are real and positive. 
This poses as restriction for the values of  c and g, O < c <  ~., and 
Igl < 2(2c) j/2 = - g * .  

where a prime indicates differentiation with respect to its argument.  The 
solutions of  these differential equations are simple sums of  exponentials 
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For fixed /, one now is able to determine the four unknowns, A~, A2, 

Bt, and B 2, by requiring the density to be equal to _+ ½ at z = _+ / and the 
density profile and its first and second derivative to be continuous at this 
point. The surface free energy as a function of / ,  which we denote a(/), is 
subsequently calculated by inserting the profiles from Eq. (5) into Eq. (1). 
The analytic answer is rather lengthy and we do not reproduce it here 
[ 14]. A typical example of a(I) is shown in Fig. 1. In this example c =  0.01 
and, from top to bottom, g=0 .3 ,  0.2, 0, -0 .2 ,  g * =  -0.282842 .... The 
filled circles indicate the location of a (local) minimum. The first minimum 
(smallest l) is the one of lowest free energy when g* < g < - g * .  The system 
is then in the partially wet regime: Only a microscopic amount of middle 
phase can be present at the oil-water interface. When a bulk of middle 
phase is present in the system, the three phases (oil, water, and middle 
phase) meet at a line of contact with the three contact angles determined 
by the three surface tensions according to Neumann's rule [13]. It was 
already noted by Schick [ 12] that the addition of the second derivative 
squared term in Eq. (1) leads to the possibility of the presence of a nonwet 
regime in a theory with a single order parameter. 

When the value of g is increased, the value of / ,  being (half) the thick- 
ness of the middle phase, at the first minimum, continuously increases and 
becomes infinite at g =  - g * .  For g >  - g *  the system is in a regime of 
complete wetting: The middle phase completely intrudes between the oil 
and the water phases (top curve in Fig. 1). The three surface tensions are 
now related to each other by Antonow's rule [ 13, 15], which states that 

0.8 -] ~ ~ -  

0.6 

0.4 

0.2 
0 1 2 

Fig. 1. The surface free energy as a funclion of / Ibr 
c=fl.01 and, from lop to bottom, g=0.3, 0.2, 0, -0.2, 
g* = -0.282842.... The circles indicate the localion of a 
(local) minimum. At g = g *  the values of tile surface 
free energy at all lhe minima are equal. 
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the surface tension of the oil-water interface equals the sum of the surface 
tensions of the oil-middle and water-middle interfaces. The condition 
g =  - g *  denotes the location of a (continuous) wetting transition. 

Upon decreasing the value of g one finds the value of the surface free 
energy at its minimum to decrease. This indicates that the surface tension of 
the oil-water interface can be lowered by adding a surfactant with increas- 
ing amphiphilicity. Figure 1 shows that the value of the free energy at the 
second minimum decreases as well and starts to compete with the first mini- 
mum. The density profile corresponding to the first minimum increases 
monotonically as a function o f - ,  while the density profile corresponding to 
the second minimum exhibits a maximum and a minimum in the middle- 
phase region. We will interpret the shape of the curve corresponding to the 
second minimum as the presence of three layers of amphiphiles, while at the 
first minimum only one layer of amphiphiles is present. 

When g = g* the surface free energy of the second minimum is exactly 
equal to the surface free energy of the first minimum [ 14]. This behavior 
can be seen in the lowest curve in Fig. 1. Not only does the surface free 
energy at the second minimum become equal to the surface free energy of 
the first minimum, but at g = g *  #lJhlitely many equal minima of the 
surface free energy occur as a function o f / .  This reflects the fact that at 
g = g * ,  surface phases with 1, 3, 5 .... layers of amphiphiles present can 
coexist. In some sense, g = g* locates a (first-order) wetting transition since 
the number of layers may be infinitely large. 

In the next section we calculate the structure and boundary tension of 
the contact line where two surface structures, one corresponding to the first 
and the other corresponding to the second minimum at g=g* in Fig. 1, 
meet. Since these surface structures can coexist only when g=g* we first 
investigate how the above formulas are simplified when g=g*. When 
g = g * ,  the definition in Eq. (6) implies that k,,,.j=O. As a result the 
density profile, Eq. (5), is now given by 

~ - l + A t e k ~ : + A 2 e  k'---, z< - I  
m(:)=,~Btsin(k,,,z)+B,zcos(k,,,z), - I < z < l  (g =g * )  (7) 

/ 

( . l -Ale-k ' - - -A,_e  ~-' --, z > l  

with k,,, = (2/c) TM. Again, for fixed /we  can determine the four unknowns, 
A~, A,, B~, and B 2. by requiring the density to be equal to ___½ at z =  + /  
and the density profile and its first and second derivatives to be continuous 
at this point. The surface free energy has (equal) minima when 

I=l~q.,,=~,,, arctank, 2k,,, / nzc (n=0,1 ,2 , . . . )  (8) 
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where the subscript eq denotes that these values of  / belong to the 
equilibrium state of  the system. The (equilibrium) surface tension at these 
minima is given by 

k~,-4 
a = o'(/:q.,,) = 4(kj + k2) (9) 

Here we have defined a as the surface free energy after minimization with 
respect to /. 

3. B O U N D A R Y  T E N S I O N  

In this section, we calculate the structure and tension of  the contact  
line between two surface phases with thicknesses /--/eq.O and /--/cq" 1' We 
will choose the contact  line parallel to the y-direction and locate the surface 
phase wi th / - - /eq ,  o at x -- - ~ and the surface phase /=/eq. ! at x = ~ .  The 
density profile, re(x , - ) ,  will now depend not only on _- but also on x. It is 
obtained from minimizing the surface fi'ee-energy functional in Eq. (1), 
generalized to accommodate  for an x- and z-dependent density, 

H m ]  = dz j dx gtm) + 

c O'-m "- 
, ,0,  

We make a variable transformation x--* lix) and investigate the density as 
a function of  - and /(x): mi/ix),  z) [9] .  The function /(x) is defined by 
r e ( s - / ( x ) ,  x ) =  ~ in analogy to the way it is defined in the previous sec- 
tion, but / is now a function of  x. The line z = I(x) defines a line of  points 
where the density profile has a discontinuous third derivative with respect 
to - For  x ~  + oo the function /ix) is equal to the constant  /¢q.o. ~. 

With the substitution x ~ lix) the surface free energy in Eq. (10) is a 
functional o f / ix ) ,  

F[/]= dxE½a,,(I)( l '(x))2+½r~,(l)( l"(x))2+½a,_(I)( l '( .v))4+ V(I)] 
- - - x  

where we have defined 

~o(I)- & g(m) ~m(I , - )  

• ): & o m(/,z) 

( I I )  
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c [ / O  2 8 ~ 

l'(/)-J" ~ dz glm) c~__mll, z) +8\a : , ,~ l ( / , - )_  +.l'(m) 

(12) 

The I~nctions n-,(/) and I'(/) as defined above can be determined only if 
one has knowledge of the density profile m(/, z). Tile way we proceed here 
is to approximate the density profile nl(/, z) by the density profile tit(z;/) as 
defined in Eq. (7). Then the functions o'o(/), a~(/), a_,(/), and I'(/) can be 
evaluated explicitly [9].  From a comparison of the definition of V(/) in 
Eq. (12) with Eq. (1), we immediately deduce that I'(/) equals the pre- 
viously defined c,(/). The surface free-energy functional has the form of the 
interface displacement model [8, 15] but with the addition of the o'~(/) and 
n-z(/) terms. The form is analogous to the Landau form in Eq. (1), and 
similarly to the coeMcient of the gradient squared term in Eq. (1), oo(/) is 
negative for some values of / ,  while the coefficient of the second derivative 
squared term, o'~(/), is positive but small. 

The Euler-Lagrange equation for the mmimization of the surface free- 
energy in Eq. { I 1 ) leads to the following, third-order, nonlinear differential 
equation 

I -- ~_a,,(I)(l') 2 -  ½a~(I)(l") 2 -  !a : ( I ) ( l ' )  4 +cr, ( I )  I'"1' + a'~(I) /"(/')-" + I ' { / )=a  

(13) 

Although tile functions a.(I ) ,  c,~(I), a2(/), and 1"(/) are all known analyti- 
cally, the expressions for them are very lengthy and the solution to the 
above differential equation with tile appropriate boundary conditions can 
be found only numerically. The resulting profile is exact when x--+ _+ 
and only approximately correct in between. Since the surface free energy 
is minimized with respect to tile whole function /(.v), we expect the 
approximation to be very accurate. 

Substituting the density profile m ( x , z )  into the expression for the 
surface fi'ee energy m Eq. (10) and subtracting the surlhce free-energy 
contributions from the surface phases at -t-~ gives the boundary tension, r, 
between the two surface phases. The boundary tension as a function of c 
is shown as the circles in Fig. 2. For small c the boundary tension increases 
rapidly with increasing c, then it goes through a maximum and decreases 
until at a certain value of c =  c* =0.1254... it becomes zero. For c > c *  the 
boundary tension is negative, signifying that the interface between the two 
surface phases is no longer stable. 
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F i g .  2.  Boundary tension as a f imction of  c (circles).  The 
boundary  tension is negative for c > c * = 0 . 1 2 5 4 . . ,  and is 
zero when c = 0 .  T i l e  dashed curve is the result o f  a n  

analytic  expans ion  Ibr small c [ see  Eq. 1 1 4 ) ] .  

Although the differential equation in Eq. (13)cannot  be solved analyti- 
cally, the coefficients of the first two terms in an expansion in small c can 
be found numerically. The result is that the line tension, for small c, is given 
by [ 14] 

r = 0.73632c 3'~ - 2 . 6 1 9 7 (  : ~  + 6 ( c  7'~) (14) 

The resulting line tension in the expansion in small c is shown in Fig. 2 as 
the dashed curve. Although the qualitative behavior is correctly described 
by the above approximation, quantitatively the expansion works only for 
very small c. 

4. SUMMARY 

We have presented a mean-field calculation of the structure and ten- 
sion between surface phases comprising of one and three amphiphilic layers 
between a bulk oil and a water phase. The theory that we have used is a 
single-order-parameter Landau model first proposed by Gompper and 
Schick in 1990 [10] .  We have shown that in a closely related model a 
(first-order) wetting transition exists, at which point amphiphilic layers of 
different thicknesses can coexist. Except for an initial sharp increase, we 
find that the boundary tension between one and three layers of amphiphiles 
decreases when the amphiphilicity of the surfactant molecules is increased. 
This behavior is analogous to the behavior of the surface tension of the 
oil water interface when surfactant is added. 

S40 16 I-5 
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A deta i led  c o m p a r i s o n  of  the ca lcu la t ion  p resen ted  here  wi th  exper i -  

men t s  is not  yet possible  since m e a s u r e m e n t s  o f  the b o u n d a r y  tens ion  have  

been car r ied  ou t  in s imi lar  sys tems but  not  for the o i l - w a t e r - s u r f a c t a n t  

system. In o r d e r  to m a k e  such a c o m p a r i s o n ,  sca t te r ing  e x p e r i m e n t s  of  the 

bulk midd le  phase  have  to be car r ied  ottt in add i t ion ,  in o rde r  to d e t e r m i n e  

the re levant  p a r a m e t c r s  g and  c. 
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